INTRODUCTION
To comply with State and Federal regulations, the Town of Morristown, will be annually issuing a report describing the quality of your drinking water. The purpose of this report is to raise your understanding of drinking water and awareness of the need to protect our drinking water sources. Last year, your tap water met all State drinking water health standards. We are proud to report that our system has not violated a maximum contaminant level or any other water quality standard. This report provides an overview of last year’s water quality. Included are details about where your water comes from, what it contains, and how it compares to State standards.

If you have any questions about this report or concerning your drinking water, please contact The Development Authority of the North Country, at 315-661-3210. We want you to be informed about your drinking water. If you want to learn more, please attend any of our regularly scheduled town board meetings. The meetings are held on the second Tuesday of the month at 7:00 pm in the town offices.

WHERE DOES OUR WATER COME FROM?
In general, the sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and can pick up substances resulting from the presence of animals or from human activities. Contaminants that may be present in source water include: microbial contaminants; inorganic contaminants; pesticides and herbicides; organic chemical contaminants; and radioactive contaminants. In order to ensure that tap water is safe to drink, the State and the EPA prescribe regulations which limit the amount of certain contaminants in water provided by public water systems. The State Health Department’s and the FDA’s regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Our water system serves approximately 500 people through 225 service connections. Our water source is the Saint Lawrence River. The intake is approximately 250 feet off shore in 18 feet of water and is located at 300 Caroline St. The water is gravity fed into the wet well where chlorine is added, It is then pumped through two 129 GPM Diatomaceous earth filters prior to distribution.

ARE THERE CONTAMINANTS IN OUR DRINKING WATER?
As the State regulations require, we routinely test your drinking water for numerous contaminants. These contaminants include: total coliform, E. Coli. Bacteria, total trihalomethanes, haloacetic acids, nitrate, primary inorganic chemicals, synthetic organic chemicals, and principal organic chemicals. The table presented below depicts which compounds were detected in your drinking water. It should be noted that all drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline (800-426-4791) or the NYS Health Department at (315) 386-1040.
Microbiological

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation</th>
<th>Date of Sample</th>
<th>Level Detected (Avg/Max) (Range)</th>
<th>Unit Measurement</th>
<th>MCLG</th>
<th>Regulatory Limit (MCL, TT or AL)</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform¹</td>
<td>No</td>
<td>2019</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>MCL ≥ 2 or more positive samples in 1 month¹</td>
<td>Naturally Present in the environment.</td>
</tr>
</tbody>
</table>

Inorganics

Table of Detected Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation</th>
<th>Date of Sample</th>
<th>Level Detected (Avg/Max) (Range)</th>
<th>Unit Measurement</th>
<th>MCLG</th>
<th>Regulatory Limit (MCL, TT or AL)</th>
<th>Likely Sources of contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate</td>
<td>NO</td>
<td>8/20/19</td>
<td>.48</td>
<td>mg/l</td>
<td>10</td>
<td>MCL = 10.0</td>
<td>Runoff from fertilizer use; Leaching from septic tanks; sewage; Erosion of natural deposits.</td>
</tr>
<tr>
<td>Barium</td>
<td>NO</td>
<td>9/16/19</td>
<td>0.023</td>
<td>mg/l</td>
<td>2.0</td>
<td>MCL = 2.0</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.</td>
</tr>
<tr>
<td>Lead</td>
<td>NO</td>
<td>9/5/18</td>
<td>5.4²</td>
<td>ug/l</td>
<td>0</td>
<td>AL = 15</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits.</td>
</tr>
<tr>
<td>Copper</td>
<td>NO</td>
<td>9/5/18</td>
<td>.39³</td>
<td>mg/l</td>
<td>1.3</td>
<td>AL = 1.3</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits; leaching from wood preservatives.</td>
</tr>
<tr>
<td>Antimony</td>
<td></td>
<td>9/16/19</td>
<td><0.40</td>
<td>ug/l</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Detected Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Date of Sample</th>
<th>Level Detected (Avg/Max) (Range)</th>
<th>Unit Measurement</th>
<th>MCLG</th>
<th>Regulatory Limit (MCL, TT or AL)</th>
<th>Likely Sources of contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>9/16/19</td>
<td>1.0 ug/l</td>
<td></td>
<td>50(^1)</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>9/16/19</td>
<td><0.30 ug/l</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>9/16/19</td>
<td><1.0 ug/l</td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>9/16/19</td>
<td>3.4 ug/l</td>
<td></td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>9/16/19</td>
<td><0.20 ug/l</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>9/16/19</td>
<td>1.3 ug/l</td>
<td></td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>9/16/19</td>
<td><1.0 ug/l</td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>9/16/19</td>
<td><0.30 ug/l</td>
<td></td>
<td>2</td>
<td>.5</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) If arsenic is detected above 25 ug/l, but below 50 ug/l (the MCL) your Annual Water Quality Report must contain the following statement: "EPA is reviewing the drinking water standard for arsenic because of special concerns that it may not be stringent enough. Arsenic is a naturally-occurring mineral known to cause cancer in humans at high concentrations."
Haloacetic Acids (HAAS S -)	NO	9/16/19	6.7	ug/l	N/A	MCL=60	By-product of drinking water chlorination
Total Trihalomethanes (THMs - chloroform, bromodichloromethane, dibromochloromethane, and bromoform) | NO | 9/16/19 | 17 | ug/l | N/A | MCL=80 | By-product of drinking water chlorination needed to kill harmful organisms. THMs are formed when source water contains large amounts of organic matter.

1 A violation occurs at systems collecting 40 or more samples per month when more than 5% of the total coliform samples are positive. A violation occurs at systems collecting less than 40 samples per month when two or more samples are total coliform positive.
2 The level presented represents the 90th percentile of the 10 sites tested. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90% of the lead values detected at your water system.
3 In this case 10 samples were collected at your water system and the 90th percentile value was the second highest value (6.0 ug/l).

Definitions:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible.

Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, which a water system must follow.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Non-Detects (ND): Laboratory analysis indicates that the constituent is not present.

Milligrams per liter (mg/l): Corresponds to one part of liquid in one million parts of liquid (parts per million - ppm).

Micrograms per liter (ug/l): Corresponds to one part of liquid in one billion parts of liquid (parts per billion - ppb).

Picocuries per liter (pCi/L): A measure of the radioactivity in water.

What does this information mean?
As you can see by the table, our system had no violations. We have learned through our testing that some contaminants have been detected; however, these contaminants were detected below the level allowed by the State.

Is our water system meeting other rules that govern operations?
During 2019, our system was in compliance with all applicable State drinking water requirements.

Do I Need to Take Special Precautions?
Although our drinking water met or exceeded state and federal regulations, some people may be more vulnerable to disease causing microorganisms or pathogens in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from...
infections. These people should seek advice from their health care provider about their drinking water. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium, Giardia and other microbial pathogens are available from the Safe Drinking Water Hotline (800-426-4791).

Why Save Water and How to Avoid Wasting It?
Although our system has an adequate amount of water to meet present and future demands, there are a number of reasons why it is important to conserve water:

♦ Saving water saves energy and some of the costs associated with both of these necessities of life;
♦ Saving water reduces the cost of energy required to pump water and the need to construct costly new wells, pumping systems and water towers; and
♦ Saving water lessens the strain on the water system during a dry spell or drought, helping to avoid severe water use restrictions so that essential firefighting needs are met.

You can play a role in conserving water by becoming conscious of the amount of water your household is using, and by looking for ways to use less whenever you can. It is not hard to conserve water. Conservation tips include:

♦ Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
♦ Turn off the tap when brushing your teeth.
♦ Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it up and you can save almost 6,000 gallons per year.
♦ Check your toilets for leaks by putting a few drops of food coloring in the tank, watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from one of these otherwise invisible toilet leaks. Fix it and you save more than 30,000 gallons a year.
♦ Use your water meter to detect hidden leaks. Simply turn off all taps and water using appliances, then check the meter after 15 minutes, if it moved, you have a leak.

CLOSING

Thank you for allowing us to continue to provide your family with quality drinking water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. The costs of these improvements may be reflected in the rate structure. Rate adjustments may be necessary in order to address these improvements. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children’s future. Please call our office, 661-3210, if you have questions.